大数据征信是利用数析和模型进行风险,依据评估分预测人的还款能力、还款意愿、以及欺诈风险。在金融风控领域,大数据指的是全量数据和用户行为数据。目前使用的是围绕客户周围的与客户信用情况高度相关的数据,利用数据实施科学风控。
1、大数据征信模型可以使信用评价更精准:大数据征信模型将海量数据纳入征信体系,并以多个信用模型进行多角度分析。
以美国互联网金融公司ZestFinance为例,它的模型基本会处理3500个数据项,提取近70000个变量,利用身份验证模型、欺诈模型、还款能力模型等十余个模型进行分析,使评价结果更加全面准确,是模型评估性能大大提高。
2、大数据征信能纳入更为多样性的行为数据:大数据时代,每个相关机构都在最大程度上设法获取行为主体的数据信息,使数据在最大程度上覆盖广泛、实时鲜活。
3、大数据征信带来了更为时效性的评判标准:传统风控的另外一个缺点是缺乏实效性数据的输入,其风控模型反映的往往是滞后数据的结果。利用滞后数据的评估结果来管理信用风险,本身产生的结构性风险就较大。
大数据的数据采集和计算能力,可以帮助企业建立实时的风险管理视图。借助于全面多纬度的数据、自我学习能力的风控模型、实时计算结果,企业可以提升量化风险评估能力。
扩展资料:
从1980年代末至今,征信行业先后经历了起步、搭建征信平台、央行主导统筹等数个阶段。 2015年1月5日,人民银行印发《关于做好个人征信业务准备工作的通知》,要求芝麻信用,腾讯征信等八家机构做好个人征信业务的准备工作,择时发放第一批牌照,但一直不见下文。
最终等来的却是由中国互联网金融协会与芝麻信用、腾讯征信等把家征信机构联手成立的百行征信。这意味着征信这个金融业最关键的阀门,最终还是要由政府来监督把控。
截止目前,百行征信已与120余家互联网金融机构和消费金融机构达成了信用信息合作共享协议,与50余家机构达成了合作意向。
没有征信牌照,征信创业公司无法合法的去获取核心数据,比如银行信贷数据或者运营商,公安局的隐私数据;也无法以牌照去融资收购其他征信公司,资金上毫无优势。因而,业内人士认为,初创公司很难在征信领域发展壮大,成为未来的寡头之一。
参考资料:凤凰网-征信大数据90%是垃圾 真正有用的数据从哪里来?
欢迎光临 爱卡网 (https://7177.cn/) | Powered by Discuz! X3.4 |